Informing phenomenological structural bone remodelling with a mechanistic poroelastic model
نویسندگان
چکیده
Studies suggest that fluid motion in the extracellular space may be involved in the cellular mechanosensitivity at play in the bone tissue adaptation process. Previously, the authors developed a mesoscale predictive structural model of the femur using truss elements to represent trabecular bone, relying on a phenomenological strain-based bone adaptation algorithm. In order to introduce a response to bending and shear, the authors considered the use of beam elements, requiring a new formulation of the bone adaptation drivers. The primary goal of the study presented here was to isolate phenomenological drivers based on the results of a mechanistic approach to be used with a beam element representation of trabecular bone in mesoscale structural modelling. A single-beam model and a microscale poroelastic model of a single trabecula were developed. A mechanistic iterative adaptation algorithm was implemented based on fluid motion velocity through the bone matrix pores to predict the remodelled geometries of the poroelastic trabecula under 42 different loading scenarios. Regression analyses were used to correlate the changes in poroelastic trabecula thickness and orientation to the initial strain outputs of the beam model. Linear (R(2) > 0.998) and third-order polynomial (R(2) > 0.98) relationships were found between change in cross section and axial strain at the central axis, and between beam reorientation and ratio of bending strain to axial strain, respectively. Implementing these relationships into the phenomenological predictive algorithm for the mesoscale structural femur has the potential to produce a model combining biofidelic structure and mechanical behaviour with computational efficiency.
منابع مشابه
Microscale poroelastic metamodel for efficient mesoscale bone remodelling simulations
Bone functional tissue adaptation is a multiaspect physiological process driven by interrelated mechanical and biological stimuli which requires the combined activity of osteoclasts and osteoblasts. In previous work, the authors developed a phenomenological mesoscale structural modelling approach capable of predicting internal structure of the femur based on daily activity loading, which relied...
متن کاملStructural Overview Of Mammalian Zinc Metalloproteinases
Matrix metalloproteinases (MMP) are crucial for homeostasis (tissue remodelling and repair, bone growth, wound healing, etc.) and pathology (metastasis, angiogenesis, aneurysm rupture, etc.). Upregulated MMPs from macrophages are thus a two-edged sword, playing both defensive and aggressive roles. The related family of ADAMs (a disintegrin and a metalloproteinase) is sometimes overlooked becaus...
متن کاملTheoretical Analysis of Fluid Pressure Response to Cyclic Loading in Cylindrical Trabecular Bone Modeled as Poroelastic Material
Trabecular bone is a microstructural component of cancellous bone, forming a three-dimensional network structure. The typical individual trabecula is regarded as a cylindrical porous material which is composed of a calcified bone matrix and interstitial fluid in a lacuno-canalicular porosity. For a physiological range of activities excluding shocks, trabeculae in vivo are usually subjected to l...
متن کاملAn Idealised Biphasic Poroelastic Finite Element Model of a Tibial Fracture
The outcome of a bone fracture partly depends upon the mechanical environment experienced by the fracture callus (reparative tissue) during the healing. Therefore biomechanics of bone fracture healing has been examined in many clinical or biological, mathematical or finite element studies (Cheal et al. 1991, DiGioia et al. 1986, Claes et al. 1999, Doblaré et al. 2004 and Oh et al. 2010). Most o...
متن کاملA model of bone adaptation as a topology optimization process with contact
Topology optimization is presently used in most diverse scientific, technologic and industrial areas, including biomechanics. Bone remodelling models and structural optimization has mutually provided inspiration for new developments in biomechanics and biomedicine. Considering that bone has the ability to adapt its internal structure to mechanical loading (Wolff’s law and Roux’s paradigm), it i...
متن کامل